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Studying causal exposure effects on dementia is challenging when death is a competing event. Researchers
often interpret death as a potential source of bias, although bias cannot be defined or assessed if the causal
question is not explicitly specified. Here we discuss 2 possible notions of a causal effect on dementia risk: the
“controlled direct effect” and the “total effect.” We provide definitions and discuss the “censoring” assumptions
needed for identification in either case and their link to familiar statistical methods. We illustrate concepts in a
hypothetical randomized trial on smoking cessation in late midlife, and emulate such a trial using observational
data from the Rotterdam Study, the Netherlands, 1990–2015. We estimated a total effect of smoking cessation
(compared with continued smoking) on 20-year dementia risk of 2.1 (95% confidence interval: −0.1, 4.2)
percentage points and a controlled direct effect of smoking cessation on 20-year dementia risk had death been
prevented of −2.7 (95% confidence interval: −6.1, 0.8) percentage points. Our study highlights how analyses
corresponding to different causal questions can have different results, here with point estimates on opposite
sides of the null. Having a clear causal question in view of the competing event and transparent and explicit
assumptions are essential to interpreting results and potential bias.

competing event; dementia; mortality; survival analysis; time to event

Dementia researchers face many methodological chal-
lenges when addressing causal questions (1), including that
individuals at risk of dementia may die of other causes prior
to its onset. When dementia is the outcome of interest, death
is a competing event because an individual who dies from
another cause prior to dementia onset cannot subsequently
experience dementia (2). The research field constantly faces
counterintuitive results, where exposures that are known to
be harmful for mortality risk sometimes seem protective
for the risk of dementia, such as smoking (3) or history of
cancer (4). Authors have attempted to make sense of these
counterintuitive results by naming biases such as “compet-
ing risk bias” or “survival bias” (5). However, “bias” cannot
be defined or assessed if the causal question or estimand is
not explicitly specified.

Despite the fact that methods to “address” competing
events have been discussed and developed over several
decades (2, 6–9), much of the methodological and applied
discussion has been on estimation (10–20) with little
emphasis on the estimands. More recent work by Young

et al. (21) placed historical estimands from the survival
analysis literature in competing events settings within
a formal counterfactual framework for causal inference.
Specifically, they formalized the interpretation, conditions
for identification in real-world studies, and some corre-
sponding statistical methods for estimation.

The goal of this paper is to translate the formal ideas
presented in Young et al. (21) for epidemiologists and
applied researchers whose understanding might be enhanced
through concrete examples, as a crucial first step to aid
and encourage more transparent and critical reasoning
in scientific studies with competing events and causal
goals. Specifically, we will illustrate the choices of the
“total effect” and “controlled direct effect” (defined below)
through an example where interest lies broadly in a causal
effect of smoking cessation (versus not) among smokers on
subsequent dementia risk.

To understand the context in which these applications
are occurring, and therefore to better understand how these
types of challenges are approached in practice, we also
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conducted a systematic review of longitudinal studies
focused (implicitly or explicitly) on causal effects on
dementia risk (see Web Appendix 1, Web Figure 1, and
Web Table 1 for methods and results, available at https://doi.
org/10.1093/aje/kwad090). We found that the vast majority
of studies reported cause-specific hazard ratios based on Cox
proportional hazards analysis with no explicit interpretation
of the effect estimate or justification for its use. The near
universal use of such an approach may be due to unsupported
and vague guidance in the literature that when the aim of
a study is “etiological” (10, 15, 22, 23), the cause-specific
hazard ratio is the most appropriate measure or that reporting
effect estimates derived from a Cox proportional hazards
model somehow amounts to “ignoring” competing events
(24). More fundamentally, the majority of these studies did
not explicitly report even the number of deaths occurring
during the study period. With this backdrop in mind, we now
describe the total and controlled direct effect in the context
of competing events.

REASONING ABOUT ASSUMPTIONS AND STATISTICS
FOR THE TOTAL AND CONTROLLED DIRECT EFFECT
(CASE 1): AN IDEALIZED TRIAL

Suppose investigators were able to conduct an idealized
randomized trial such that middle-aged smokers are ran-
domly assigned to a strategy of quitting versus continuing
smoking. Dementia onset is rigorously measured through
constant screening (therefore minimizing outcome misclas-
sification) and date of death is collected through linkage
with municipal records. Further, suppose that in the idealized
trial we have complete follow-up (all individuals remain
in the study until administrative study end of follow-up or
until death) and perfect adherence. Trial participants will
be observed to follow different possible event trajectories
through the study period: death without developing demen-
tia, dementia onset (some dying after dementia onset), or
remaining alive and dementia-free until end of follow-up.

The key challenge of causal inference with competing
events is that, for those individuals who died without devel-
oping dementia, after the time of death, they cannot sub-
sequently develop dementia. For illustration, consider the
causal diagram in Figure 1, which represents an underlying
data-generating assumption on the key features of this data
structure: Smoking represents smoking status at “time zero”
(i.e., at the time of randomization), and “Death (19)” and
“Dementia (20)” represent indicators of death by 19 years
of follow-up and dementia risk by 20 years of follow-
up, respectively. By randomization in this study, we know
there are no shared causes of smoking and other variables
represented in the graph (the only cause of quitting smoking
is a “coin flip”). However, we have no such guarantee for
death and dementia status over the follow-up and therefore
depict shared causes, C, of dementia and death (such as
cardiovascular comorbidities) that may or may not be mea-
sured. The arrows from Smoking to Death (19) and Smoking
to Dementia (20) illustrate that smoking may affect both
dementia and death through different mechanisms. Smoking
may also affect C, although we have omitted this arrow for

Smoking Death (19) Dementia (20)

C

Figure 1. A causal directed acyclic graph representing some key
causal features of the data structure. Smoking represents the expo-
sure status (quit smoking vs. continue smoking), Death (19) and
Dementia (20) represent indicators of death by 19 years of follow-
up and dementia by 20 years of follow-up, respectively. C represents
a vector of possible shared causes of dementia and death (such as
cardiovascular comorbidities), that may or may not be measured.The
key relationships are: 1) Smoking may independently affect the risk
of both dementia and death over time through different mechanisms;
2) dying over the first 19 years of follow-up (without prior onset of
dementia) determines that the indicator of dementia at 20 years of
follow-up is zero (the bold arrow representing this key determinism
induced by competing events); and 3) dementia and death can have
shared causes.

simplicity, and it does not affect the assumptions described
below. The bold arrow from Death (19) to Dementia (20)
represents the key feature of a competing events data struc-
ture: An individual who dies by year 19 of follow-up can-
not subsequently develop dementia at the next time point.
Although we present death and dementia at years 19 and
20, respectively, the causal diagram could be expanded to
include prior assessments, but this simplified causal diagram
is sufficient for our consideration of the different causal
questions.

Before moving forward to the next section, we note
that the historic survival-analysis terminology classifies
this structure as “semicompeting events” since death is a
competing event for dementia but not the other way around
(25). Although several authors consider semicompeting
events as a different problem (13, 14), this different
designation is unnecessary when we begin with causal
questions rather than statistics. That is, when the study event
of interest is subject to competing events (again, meaning
there exist events that determine that the event of interest
cannot subsequently occur) the key considerations for causal
inference (defining a causal question and reasoning about
identification, which are the drivers of choosing an appro-
priate analytical approach) are unchanged regardless of
whether this target event is nonterminal (such as dementia)
or terminal (such as a particular cause of death) (26–28).

Two different notions of a causal effect on dementia: the
total and controlled direct effect

In this section we outline the estimands that represent the
total and the controlled direct effect. Formal counterfactual
notation is available at Young et al. (21).

The total effect can be quantified by the answer to the
following question: What would the difference in dementia
risk by 20-year follow-up be had all individuals in the study
population quit smoking versus, instead, had all individuals
continued smoking? This dementia risk is an example of a
“cause-specific cumulative incidence” or “crude risk” in the
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Table 1. Comparison of the Total and Controlled Direct Effect of Smoking Cessation on Dementia Diagnosis When Death (a Competing Event
for Dementia) Is Present

Feature Total Effect Controlled Direct Effect

Estimands for the risk differencea Pr
[
Ya=1

k+1 = 1
]

− Pr
[
Ya=0

k+1 = 1
]

Pr
[
Ya=1,d̄=0̄

k+1 = 1
]

− Pr
[
Ya=0,d̄=0̄

k+1 = 1
]

Exchangeability assumption needed
for death (competing events)?b

Not needed Needed. Requires that at each follow-up
time, conditional on the measured past,
death is independent of future
counterfactual outcomes had everyone
followed A = a and death was eliminated.

Positivity assumption needed for
death (competing events)?b

Not needed Needed. Requires that for any possibly
observed level of exposure and covariate
history among those remaining uncensored
(alive) and free of dementia diagnosis
through k, some individuals continue to
remain alive through k + 1.

Consistency assumption needed for
death (competing events)?b

Not needed Needed. Requires that an intervention that
“eliminates death (competing events)” is
well-defined.

Interpretation The effect captures all pathways by which
exposure affects dementia, which may
include both direct and indirect exposure
effects outside and through the exposure’s
effect on mortality

Direct effect on dementia not via death,
referring to scenario where death has
(somehow) been eliminated.

a Ya
k+1 denotes counterfactual dementia diagnosis status by k + 1 under exposure level a. Ya,d̄=0̄

k+1 denotes counterfactual dementia diagnosis

status by k + 1 under exposure level a and (somehow) eliminating the competing event such that d̄ = 0̄.
b See Web Appendix 2 for fuller discussion.

traditional survival analysis literature (2, 29). The total effect
captures all pathways by which exposure affects dementia,
which include both a direct effect on dementia (Smoking

Dementia (20)) and indirect of smoking via mortality
(Smoking Death (19) Dementia (20)), as observed in
the causal diagram in Figure 1. This indirect effect is neces-
sarily protective since participants who die due to smoking
at an earlier time point are “protected” from developing
dementia. This “pathological mediation” structure gives the
total effect a potentially problematic interpretation, since
smoking cessation may increase the risk of dementia but
primarily or solely because it delays death. Thus, interpre-
tation of the total effect should be cautious when there may
exist an arrow between the exposure and competing event.
Empirical support for this arrow might be obtained by also
estimating the total effect of smoking cessation on all-cause
mortality but should also be considered in light of subject
matter knowledge.

Alternatively, a direct effect of smoking on the risk of
dementia (that does not also capture the pathways mediated
by death) may be of interest. There are multiple ways to
define a direct effect (30–32). We present a definition that
may lead to familiar statistical methods under certain reason-
ing about “censoring events” as will be described in the next
section: the controlled direct effect. In our example, a ques-
tion about the controlled direct effect is phrased as: What
would the difference in dementia risk by 20-year follow-up
be had all individuals in the study population quit smoking
and not died throughout the study period versus, instead, had

all individuals continued smoking and not died throughout
the study period? This dementia risk (under elimination of
death) is an example of a “net risk” or “marginal cumulative
incidence” (2, 29). This effect captures the direct effect of
smoking on dementia because it refers to a hypothetical
setting in which somehow death could be eliminated.

The risk differences above both quantify causal effects
(represented in counterfactual notation in Table 1) because
they both refer to a comparison of outcome distributions
under different interventions but in the same individuals.
In contrast, while cause-specific hazard ratios are the basis
of the majority of analyses in dementia studies, their inter-
pretation as causal effects is problematic, even under the
conditions of an ideal trial. Unlike risks, hazards are defined
conditional on not yet having had the outcome or competing
event. This conditioning means that hazard contrasts do not
compare outcomes under different exposures in the same
individuals when exposure and other factors affect these
events (21, 33–35). Therefore, in dementia studies, cause-
specific hazard ratios will not generally have a causal inter-
pretation when exposure affects either dementia or death
(directly or indirectly). For this reason, we focus on risks
even though most studies in our literature review reported
hazard ratios (Web Table 1).

In sum, there is no single way to define “the” causal
effect on dementia when deaths occur. Choosing to study
the total effect, the controlled direct effect, both, and/or other
alternative estimands as the causal effect of interest should
be done on a case-by-case basis. Furthermore, presenting
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information on the total exposure effect on all-cause mor-
tality may complement any such estimand.

Identifying the total effect and the controlled direct
effect on dementia

Now that our causal effects have been stated, in this
section we discuss the assumptions that help us connect our
causal quantity of interest to observable data (i.e., identifica-
tion). In the idealized trial we considered above, particularly
with complete adherence and no loss to follow-up, the total
effect can be identified under conditions that are expected to
hold by design. Namely, the idealized trial implies we expect
consistency, positivity, and exchangeability with respect to
the exposure (36, 37).

In contrast, these conditions are not sufficient to identify
the controlled direct effect of smoking cessation on the risk
of dementia. In Figure 1, we observe the noncausal path
between death and dementia through their shared cause C,
Dementia (20) C Death (19). Death is a form of censor-
ing for this question, a type of missingness in the outcome
of interest (21). When an individual dies prior to demen-
tia onset, dementia onset “under elimination of death” is
missing for that individual. While many researchers equate
“death” with “censoring” by default, these terms are not
synonymous: Death is only a type of censoring (leading to
missingness of the dementia outcome) when the question
of interest is about outcomes “under elimination of death.”
This illustrates that, what constitutes censoring depends on
the question of interest, and when censoring is present, we
need additional exchangeability, positivity, and consistency
conditions with respect to censoring (21). Thus, even in our
above-described trial with randomized smoking cessation,
we need to measure and adjust for C to identify the con-
trolled direct effect.

Figure 1 is consistent with a conditional exchangeability
assumption for censoring, conditional on shared cause C of
dementia and death (2, 21, 38, 39). Assuming the absence of
shared causes between death and dementia (i.e., assuming
the absence of the dotted arrows from C to Death (19) and
Dementia (20) in Figure 1) coincides with the assumption
of unconditional exchangeability for censoring with respect
to C, analogously related to unconditional “independent
censoring.” Unconditional exchangeability for censoring is
implausible for nearly all dementia research when censoring
includes death, since both events are related to the aging
process, while conditional exchangeability assumptions may
become more plausible if measuring and adjusting for a rich
set of baseline and time-varying shared causes. A summary
of the additional identifiability assumptions in respect to
death for both questions is presented in Table 1 and outlined
in more detail in Web Appendix 2.

Relatedly, loss to follow-up is a form of censoring for total
and direct effects. Since mechanisms of loss to follow-up
might be related to impaired cognition and dementia, shared
causes of attrition and dementia should be measured (40,
41). Further details on censoring, exchangeability assump-
tions, and graphical identification of both effects, including
scenarios with loss to follow-up, can be found in Young et
al. (21).

Statistical methods to estimate the total effect and the
controlled direct effect

Now that we have outlined an idealized trial when com-
peting events are present, phrased 2 alternative causal ques-
tions, and discussed the assumptions required for identifi-
cation, we are equipped to consider appropriate statistical
methods. In our idealized trial, the total effect can be esti-
mated by simply comparing 2 proportions: the proportion
diagnosed with dementia at 20-year follow-up in the “quit
smoking” arm versus the proportion diagnosed with demen-
tia at 20-year follow-up in the “do not quit smoking” arm.
In both proportions, individuals who die before developing
dementia will contribute to the denominator but never to
the numerator. Likewise, these quantities can be estimated
with the Aalen-Johansen estimator (21, 29), which extends
to settings with loss to follow-up.

In contrast, estimation of the controlled direct effect in the
ideal trial will yet require covariate adjustment on the shared
causes of death and dementia, to satisfy the conditional
exchangeability assumption for censoring. To this matter,
one basic possibility is to estimate the controlled direct
effect by comparing the risk estimates from the complement
of a weighted version of the Kaplan-Meier estimator (21),
where weights represent the inverse probability of censoring
by death conditional on covariates (21, 38, 39, 42, 43).
These covariates should be those assumed to ensure the
conditional exchangeability assumption for this form of
censoring (e.g., the covariates C in Figure 1). We point to
inverse-probability weighting as one of multiple estimation
methods, given its familiarity and straightforward adaptation
to traditional statistical methods in any statistical software
(42, 43). However, readers should be aware of methods such
as the parametric g-formula, which can serve to answer
complex questions for time-varying treatment strategies at
the expense of more parametric model assumptions, and
open-source software is available to estimate the total effect
as well as the control direct effect in settings with compet-
ing events (44). Likewise, doubly robust extensions can be
adapted to estimate either of these estimands with options to
incorporate machine learning (45–47).

Last, we can estimate the risk of all-cause mortality using
standard methods like the Kaplan-Meier estimator. Recalcu-
lation of the time to death should include the period beyond
the dementia diagnosis, for those who had dementia over
follow-up. In all cases, straightforward extensions exist for
covariate adjustment (e.g., by inverse probability weighting)
to address loss to follow-up and confounding (21, 41, 48–
50). As such, these methods can be used both in randomized
trials and observational studies, although our consideration
of estimation in an ideal trial helps illuminate the unique
feature of competing events.

REASONING ABOUT ASSUMPTIONS AND STATISTICS
FOR THE TOTAL AND CONTROLLED DIRECT EFFECT
(CASE 2): APPLICATION TO THE ROTTERDAM STUDY

We now illustrate the estimation of total and controlled
direct effects of smoking cessation on dementia using data
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Table 2. Descriptive Characteristics of Former and Current Smokers in the Rotterdam Study, the Netherlands, 1990–2015

Former Smokers
(n = 2,607)

Current Smokers
(n = 1,572)

Characteristic

No. % No %

Age, yearsa 62.35 (4.0) 61.69 (4.0)

Women 1,090 41.8 780 49.6

Education

Primary education 258 9.9 198 12.6

Lower or intermediate general education or lower vocational education 1,080 41.4 693 44.1

Intermediate vocational education or higher general education 862 33.1 483 30.7

Higher vocational education or university 399 15.3 190 12.1

Unknown 8 0.3 8 0.5

APOE-ε4, carrier status

Noncarrier 1747 67 1,074 68.3

1 allele 687 26.4 380 24.2

2 alleles 71 2.7 33 2.1

Unknown 102 3.9 85 5.4

Systolic blood pressure, mm Hga 137.59 (20.8) 135.22 (21.3)

Body mass indexa,b 26.93 (3.7) 25.86 (3.8)

Prevalent hypertension diagnosis 1,468 56.3 767 48.8

Prevalent stroke 52 2 23 1.5

Prevalent heart disease diagnosis 226 8.7 72 4.6

Unknown heart disease diagnosis 42 1.6 28 1.8

Prevalent diabetes diagnosis 275 10.5 147 9.4

Unknown diabetes diagnosis 389 14.9 364 23.2

Prevalent cancer diagnosis 69 2.6 27 1.7

Abbreviation: APOE, apolipoprotein E.
a Values are expressed as mean (standard deviation).
b Weight (kg)/height (m)2.

collected from the Rotterdam Study, a population-based
prospective cohort study (51). Our discussion of this exam-
ple is intended to highlight the features that are shared with
the idealized trial above—namely, how we reason about
the assumptions and statistics for the total and controlled
direct effect in a real data setting with competing events,
where other considerations (e.g., baseline confounding, loss
to follow-up) are nonetheless present.

Rotterdam Study participants older than 55 years under-
went questionnaire administration, physical and clinical
examinations, and blood sample collection at baseline
(1990–1993) and at follow-up visits from 1993–1995,
1997–1999, 2002–2005, and 2009–2011. Smoking habits
were assessed through questionnaires at study entry via
self-reported status as “former smoker,” “current smoker,”
or “never smoker.” Dementia diagnosis was collected by
screening at each visit and through continuous automated
linkage with digitized medical records and regional
registries. Death certificates were obtained via municipal
population registries with complete linkage. Further details

are specified in Web Appendix 3. This ascertainment method
means the Rotterdam Study has functionally no loss to
follow-up with respect to dementia diagnosis and death. The
Rotterdam Study has been approved by the medical ethics
committee according to the Population Study Act Rotterdam
Study, and written informed consent was obtained.

Individuals aged 55–70 years who reported smoking (cur-
rent or former) and who did not have history of demen-
tia at cohort entry were eligible for the present study. To
emulate the trial described previously, we contrast former
and current smokers. This contrast has some limitations
when viewed as an emulation of the trial; for example,
there may be unmeasured confounding, selection bias due
to misaligning “time zero” (52, 53), and measurement error
(37). A thorough consideration of these other issues would
be critical for evaluating the effect size of smoking cessation
on dementia risk but go beyond the scope of this exercise.
For didactic purposes, we therefore focus our attention on
how the competing event of death affects the interpretation,
assumptions evoked, and analytical decisions.
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Table 3. Total Effect and Controlled Direct Effect of Smoking Cessation (Compared With Continued Smoking) on the Risk of Dementia, and
the Total Effect on Risk of Mortality, at 20 Years of Follow-up, for Participants From the Rotterdam Study, the Netherlands, 1990–2015

Causal Effect Risk Difference 95% CI Risk Ratio 95% CI

Total effect on dementia 2.1 −0.1, 4.2 1.21 0.99, 1.50

Controlled direct effect on dementia (with IPCW for death) −2.7 −6.1, 0.8 0.86 0.72, 1.05

Total effect on mortality −17.4 −20.5, −14.2 0.68 0.63, 0.72

Abbreviations: CI, confidence interval; IPCW, inverse-probability-of-censoring weights.

METHODS

To estimate the total effect of smoking cessation on
dementia risk, we compared a weighted Aalen-Johannsen
estimator in current versus former smokers with weights
defined as a product of inverse-probability-of-treatment
weights (37) to adjust for the following possible con-
founders: age, sex, apolipoprotein E ε4 status, and educa-
tional attainment. Briefly, the weight for a current smoker
is defined as the inverse of the probability of smoking
conditional on covariates, and for a former smoker as the
inverse of quitting conditional on covariates. We estimated
these probabilities with a logistic regression model for
smoking as a function of the above-mentioned covariates.

To estimate the controlled direct effect, we compared the
complement of a weighted Kaplan-Meier survival estimator
in smokers versus former smokers with time indexed in
years. The weights in this case are time-varying by follow-
up year, defined as a product of the time-fixed weights
above and a year-specific inverse-probability-of-censoring-
by-death weights. For an individual still alive in year t,
the time t censoring weight is the product of the inverse
probability of surviving in each year prior to t, conditional
on measured shared causes of death and dementia (that is,

variables such as C in Figure 1). For an individual who
has died by time t, the year-t censoring weight is zero. We
estimated survival probabilities using a logistic regression
model for death as a function of baseline and time-varying
covariates. Baseline covariates included smoking status, age,
sex, apolipoprotein E ε4 status, and educational attainment;
time-varying covariates included systolic blood pressure,
body mass index, and prevalent and incident comorbid heart
disease, cancer, stroke, and diabetes. All modeling spec-
ifications and weights assessment are presented as Web
Appendix 4. For illustrative purposes, we contrast how esti-
mates change when relying on: 1) unconditional exchange-
ability for censoring by death; 2) exchangeability for censor-
ing by death conditional only on baseline covariates; and 3)
exchangeability for censoring by death conditional on both
baseline and time-varying covariates (main results) in the
Web Table 2.

We also estimated the total effect of smoking on mortality
risk applying the Kaplan-Meier estimator with the weights
calculated for handling confounding. We therefore assume
that the same set of measured confounders used to estimate
the total effect of smoking on dementia risk are sufficient
for addressing confounding of the total effect of smoking
on mortality risk. Estimates of all effects at 20 years of
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Figure 2. Risk of dementia and death by smoking cessation status over 20 years of follow-up, using data from the Rotterdam Study, the
Netherlands, 1990–2015. A) Total effect on dementia risk: Curves represent the cause-specific cumulative incidence or crude risk of dementia
over 20 years of follow-up had participants continued smoking vs. quit smoking. B) Controlled direct effect on dementia risk: Curves represent
the marginal cumulative incidence or net risk of dementia (had death been eliminated) over 20 years of follow-up had participants continued
smoking vs. quit smoking. C) Total effect on mortality: Curves represent the cumulative incidence or risk of all-cause mortality over 20 years of
follow-up had participants continued smoking vs. quit smoking.
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follow-up are presented as risk differences and risk
ratios. All 95% confidence intervals were calculated using
percentile-based bootstrapping with 500 bootstrap samples.

RESULTS

Of 10,994 Rotterdam Study participants, 4,179 individu-
als met eligibility criteria (55–70 years, reported smoking
history at baseline, and did not have history of dementia
at study entry). The mean age was 62 years, and 1,870
(44.7%) were women (Table 2). In total, 368 (8.8%) devel-
oped dementia and 1,318 (31.5%) died over 20 years of
follow-up. The median time to dementia was 15.5 years,
and the median time to death was 13.1 years. Overall, from
1,572 who were current smokers at baseline, 117 (7.4%)
developed dementia and 630 (40.1%) died; of the 2,607
former smokers, 251 (9.6%) developed dementia and 688
(26.4%) died.

We estimated a total effect of smoking cessation (com-
pared with continued smoking) on 20-year dementia risk of
2.1 (95% confidence interval: −0.1, 4.2) percentage points
(Table 3; Figure 2). This slightly harmful effect estimate of
quitting smoking (with wide confidence intervals) includes
all causal pathways, including those through death. The
presence of these pathways (from smoking to death) is clear
from decades of research but also evidenced in these data:
The estimated total effect of quitting smoking on 20-year
mortality risk was –17.4 (95% confidence interval: −20.5,
−14.2) percentage points. Alternatively, we estimated a con-
trolled direct effect of quitting smoking on 20-year dementia
risk, had death been fully prevented during the study period,
as −2.7 (95% confidence interval: −6.1, 0.8) percentage
points.

DISCUSSION

In longitudinal (randomized and observational) studies
where dementia is the main outcome and deaths occur during
follow-up, having clear causal questions and being explicit
about the assumptions required for answering them will lead
to more transparent interpretation of results, more appropri-
ate analytical solutions, and a deeper understanding about
plausible sources and magnitudes of bias. We considered
2 causal questions, beginning with the total effect, which
captures all causal pathways including those mediated by
death. In our example, the small estimated harmful total
effect of smoking cessation on dementia risk necessarily
captures some “protection” against dementia by death. This
is not a “bias” but rather a feature of the total effect as the
research question.

The controlled direct effect does not have this feature, and
in our example, we estimated a small reduction in dementia
risk if death was eliminated. However, residual bias from
failing to adjust for a sufficient set of shared causes of death
and dementia can remain, especially if only baseline covari-
ates are considered (as observed in results of Web Table 2).
Because exchangeability for censoring cannot be verified
empirically, deep knowledge of the biological process and
data generation mechanisms are needed (2). Furthermore,

upper and lower bounds for extreme scenarios of depen-
dency between the outcome of interest and the competing
event can be estimated for additional understanding (2, 6,
39, 54). Since the controlled direct effect refers to a fictional
scenario where everyone remains alive, the interpretation of
this estimand still remains vague given that how to achieve
such a scenario is not clear (55–57). We focused on this
notion of direct effect as an alternative to the total effect to
drive analysis; as we discussed, it can be estimated using
popular and familiar analytical approaches in the survival
analysis literature.

Alternative questions can be posed when competing
events are present, some also capturing notions of direct
effect. For example, the “survivor average treatment effect”
quantifies the effect of a treatment on a subgroup of
individuals who would not die during the study period
under either level of treatment (32, 58). However, the utility
of this question is questionable as this subgroup is not
observable and may not even exist. The novel alternative of
“separable effects” avoids evoking scenarios that “eliminate
death” or unobservable subpopulations (31, 33). Separable
effects are effects of modified treatments motivated by
the physical decomposition of the exposure assumed to
operate on dementia and death through separate pathways
or completely different treatments that operate like the study
treatment. Statistics for these estimands do not coincide with
“off-the-shelf” survival analysis methods and at this time
require more novel software (59). Of course, yet another
notion of effect in competing event settings is the total
effect on the combined outcome endpoint, such as the effect
on dementia or death. This is simply a combination of the
total effects on dementia and death separately and will only
lose information compared with targeting these separate
total effects (8). In our example, because the total effect
of smoking on mortality is so large, it would drive the
magnitude of this composite effect.

Too often, we start by choosing a statistical method with-
out clarification on the research question of interest. In a
setting with competing events, choosing a research question
is not straightforward. In this work, we focused on 2 possible
causal questions that can lead to familiar statistical proce-
dures as an accessible step forward beyond the use of Cox
proportional hazards analysis. Through our discussion and
application, we hope that readers will see an opportunity to
reconceptualize how to ask clearer questions in the context
of competing events, and let the questions lead toward the
methods that best suit the aim.

ACKNOWLEDGMENTS

Author affiliations: Department of Epidemiology,
Erasmus University Medical Center, Rotterdam, the
Netherlands (L. Paloma Rojas-Saunero, M. Arfan Ikram,
Sonja A. Swanson); Department of Epidemiology, Fielding
School of Public Health, University of California, Los
Angeles, Los Angeles, California, United States (L. Paloma
Rojas-Saunero); Department of Population Medicine,
Harvard Medical School and Harvard Pilgrim Health Care

Am J Epidemiol. 2023;192(8):1415–1423



1422 Rojas-Saunero et al.

Institute, Boston, Massachusetts, United States (Jessica G.
Young); Department of Epidemiology, Harvard T. H. Chan
School of Public Health, Boston, Massachusetts, United
States (Jessica G. Young, Sonja A. Swanson); CAUSALab,
Harvard T. H. Can School of Public Health, Boston,
Massachusetts, United States (Jessica G. Young, Sonja A.
Swanson); Leibniz Institute for Prevention Research and
Epidemiology—BIPS, Bremen, Germany (Vanessa
Didelez); Faculty of Mathematics and Computer Science,
University of Bremen, Bremen, Germany (Vanessa
Didelez); and Department of Epidemiology, School of
Public Health, University of Pittsburgh, Pittsburgh,
Pennsylvania, United States (Sonja A. Swanson).

This work was supported by ZonMW Memorabel
(project no. 73305095005) and Alzheimer Nederland
through the Netherlands Consortium of Dementia Cohorts
(NCDC) in the context of Deltaplan Dementie.

The Rotterdam Study data can be obtained via requests
directed toward the management team of the Rotterdam
Study (secretariat.epi@erasmusmc.nl), which has a
protocol for approving data requests. Because of
restrictions based on privacy regulations and informed
consent of the participants, data cannot be made freely
available in a public repository. All analyses were
performed using R (R Foundation for Statistical
Computing, Vienna, Austria); code is publicly available at
https://github.com/palolili23/competing_risks_dementia.

We gratefully thank all Rotterdam Study participants and
staff for their time and commitment to the study.

This work was presented at the 2020 Alzheimer’s
Association International Conference (online), July 30,
2020; and at the 2020 MELODEM Annual Meeting
(online), July 20, 2020.

A preprint of this article has been published online.
Rojas-Saunero LP, Young JG, Didelez V, et al. Choosing
questions before methods in dementia research with
competing events and causal goals. medRxiv. 2021. (https://
doi.org/10.1101/2021.06.01.21258142).

Conflict of interest: none declared.

REFERENCES

1. Weuve J, Proust-Lima C, Power MC, et al. Guidelines for
reporting methodological challenges and evaluating potential
bias in dementia research. Alzheimer’s and Dement. 2015;
11(9):1098–1109.

2. Tsiatis AA. A nonidentifiability aspect of the problem of
competing risks. Proc Natl Acad Sci. 1975;72(1):20–22.

3. Abner EL, Nelson PT, Jicha GA, et al. Tobacco smoking and
dementia in a Kentucky cohort: a competing risk analysis.
J Alzheimers Dis. 2019;68(2):625–633.

4. Driver JA. Inverse association between cancer and
neurodegenerative disease: review of the epidemiologic and
biological evidence. Biogerontology. 2014;15(6):547–557.

5. Ospina-Romero M, Glymour MM, Hayes-Larson E, et al.
Association between Alzheimer disease and cancer with
evaluation of study biases: a systematic review and
meta-analysis. JAMA Netw Open. 2020;3(11):e2025515.

6. Peterson AV. Bounds for a joint distribution function
with fixed sub-distribution functions: application to
competing risks. Proc Natl Acad Sci. 1976;73(1):
11–13.

7. Karn MN. An inquiry into various death-rates and the
comparative influence of certain diseases on the duration of
life. Ann Eugen. 1931;4(3–4):279–302.

8. Karn MN. A further study of methods of constructing life
tables when certain causes of death are eliminated.
Biometrika. 1933;25(1):91–101.

9. Prentice RL, Kalbfleisch JD, Peterson AVJ, et al. The
analysis of failure times in the presence of competing risks.
Biometrics. 1978;34(4):541–554.

10. Lau B, Cole SR, Gange SJ. Competing risk regression models
for epidemiologic data. Am J Epidemiol. 2009;170(2):
244–256.

11. Fine JP, Gray RJ. A proportional hazards model for the
subdistribution of a competing risk. J Am Stat Assoc. 1999;
94(446):496–509.

12. Klein JP, Andersen PK. Regression modeling of competing
risks data based on pseudovalues of the cumulative incidence
function. Biometrics. 2005;61(1):223–229.

13. Andersen PK, Abildstrom SZ, Rosthøj S. Competing risks as
a multi-state model. Stat Methods Med Res. 2002;11(2):
203–215.

14. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics:
competing risks and multi-state models. Stat Med. 2007;
26(11):2389–2430.

15. Austin PC, Lee DS, Fine JP. Introduction to the analysis of
survival data in the presence of competing risks. Circulation.
2016;133(6):601–609.

16. Eloranta S, Lambert PC, Andersson TM-L, et al. The
application of cure models in the presence of competing risks:
a tool for improved risk communication in population-based
cancer patient survival. Epidemiology. 2014;25(5):
742–748.

17. Hinchliffe SR, Lambert PC. Flexible parametric modelling of
cause-specific hazards to estimate cumulative incidence
functions. BMC Med Res Methodol. 2013;13:13.

18. Lambert PC, Dickman PW, Nelson CP, et al. Estimating the
crude probability of death due to cancer and other causes
using relative survival models. Stat Med. 2010;29(7–8):
885–895.

19. Balan TA, Putter H. A tutorial on frailty models. Stat
Methods Med Res. 2020;29(11):3424–3454.

20. Nicolaie MA, van Houwelingen HC, Putter H. Vertical
modeling: a pattern mixture approach for competing risks
modeling. Stat Med. 2010;29(11):1190–1205.

21. Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, et al. A
causal framework for classical statistical estimands in failure
time settings with competing events. Stat Med. 2020;39(8):
1199–1236.

22. Austin PC, Fine JP. Practical recommendations for reporting
Fine-Gray model analyses for competing risk data. Stat Med.
2017;36(27):4391–4400.

23. Koller MT, Raatz H, Steyerberg EW, et al. Competing risks
and the clinical community: irrelevance or ignorance? Stat
Med. 2012;31(11–12):1089–1097.

24. Frain L, Swanson D, Cho K, et al. Association of cancer and
Alzheimer’s disease risk in a national cohort of veterans.
Alzheimer’s and Dement. 2017;13(12):1364–1370.

25. Fine JP, Jiang H, Chappell R. On semi-competing risks data.
Biometrika. 2001;88(4):907–919.

26. Varadhan R, Xue Q-L, Bandeen-Roche K. Semicompeting
risks in aging research: methods, issues and needs. Lifetime
Data Anal. 2014;20(4):538–562.

Am J Epidemiol. 2023;192(8):1415–1423

https://github.com/palolili23/competing_risks_dementia
https://doi.org/10.1101/2021.06.01.21258142
https://doi.org/10.1101/2021.06.01.21258142


Questions for Competing Events in Dementia Research 1423

27. Stensrud MJ, Young JG, Martinussen T. Discussion on
“causal mediation of semicompeting risks” by Yen-Tsung
Huang. Biometrics. 2021;77(4):1160–1164.

28. Huang Y. Rejoinder to “causal mediation of semicompeting
risks.”. Biometrics. 2021;77(4):1170–1174.

29. Geskus RB. Data Analysis With Competing Risks and
Intermediate States. 1st ed. Boca Raton, FL: Chapman &
Hall/CRC Biostatics Series; 2016.

30. Robins JM, Greenland S. Identifiability and exchangeability
for direct and indirect effects. Epidemiology. 1992;3(2):
143–155.

31. Stensrud MJ, Young JG, Didelez V, et al. Separable effects
for causal inference in the presence of competing events.
J Am Stat Assoc. 2020;0(0):1–23.

32. Frangakis CE, Rubin DB. Principal stratification in causal
inference. Biometrics. 2002;58(1):21–29.

33. Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, et al. A
generalized theory of separable effects in competing event
settings. Lifetime Data Anal. 2021;27(4):588–631.

34. Stensrud MJ, Aalen JM, Aalen OO, et al. Limitations of
hazard ratios in clinical trials. Eur Heart J. 2019;40(17):
1378–1383.

35. Hernán MA. The hazards of hazard ratios. Epidemiology.
2010;21(1):13–15.

36. Pearl J. Causal diagrams for empirical research. Biometrika.
1995;82(4):669–710.

37. Hernán MA, Robins JM. Causal Inference: What If . 1st ed.
Boca Raton, FL: Chapman & Hall/CRC; 2020.

38. Willems SJW, Schat A, van Noorden MS, et al. Correcting
for dependent censoring in routine outcome monitoring data
by applying the inverse probability censoring weighted
estimator. Stat Methods Med Res. 2018;27(2):323–335.

39. van Geloven N, Geskus RB, Mol BW, et al. Correcting for
the dependent competing risk of treatment using inverse
probability of censoring weighting and copulas in the
estimation of natural conception chances. Stat Med. 2014;
33(26):4671–4680.

40. Hernán MA, Hernández-Díaz S, Robins JM. A structural
approach to selection bias. Epidemiology. 2004;15(5):
615–625.

41. Howe CJ, Cole SR, Lau B, et al. Selection bias due to loss to
follow up in cohort studies. Epidemiology. 2016;27(1):91–97.

42. Satten GA, Datta S. The Kaplan-Meier estimator as an
inverse-probability-of-censoring weighted average. Am Stat.
2001;55(3):207–210.

43. Robins JM, Finkelstein DM. Correcting for noncompliance
and dependent censoring in an AIDS clinical trial with
inverse probability of censoring weighted (IPCW) log-rank
tests. Biometrics. 2000;56(3):779–788.

44. McGrath S, Lin V, Zhang Z, et al. gfoRmula: an R package
for estimating the effects of sustained treatment strategies via
the parametric g-formula. Patterns. 2020;1(3):100008.

45. Díaz I, Hoffman KL, Hejazi NS. Causal survival analysis
under competing risks using longitudinal modified treatment

policies [preprint]. arXiv. 2022. (https://doi.org/10.48550/
arXiv.2202.03513). Accessed July 7, 2022.

46. Benkeser D, Carone M, Gilbert PB. Improved estimation of
the cumulative incidence of rare outcomes. Stat Med. 2018;
37(2):280–293.

47. Schnitzer ME, Moodie EEM, van der Laan MJ, et al.
Modeling the impact of hepatitis C viral clearance on
end-stage liver disease in an HIV co-infected cohort with
targeted maximum likelihood estimation. Biometrics. 2014;
70(1):144–152.

48. Cole SR, Lau B, Eron JJ, et al. Estimation of the standardized
risk difference and ratio in a competing risks framework:
application to injection drug use and progression to AIDS
after initiation of antiretroviral therapy. Am J Epidemiol.
2015;181(4):238–245.

49. Xu S, Shetterly S, Powers D, et al. Extension of
Kaplan-Meier methods in observational studies with
time-varying treatment. Value Health. 2012;15(1):167–174.

50. Howe CJ, Cole SR, Chmiel JS, et al. Limitation of inverse
probability-of-censoring weights in estimating survival in the
presence of strong selection bias. Am J Epidemiol. 2011;
173(5):569–577.

51. Ikram MA, Brusselle G, Ghanbari M, et al. Objectives,
design and main findings until 2020 from the Rotterdam
Study. Eur J Epidemiol. 2020;35(5):483–517.

52. Hernán MA, Sauer BC, Hernández-Díaz S, et al. Specifying a
target trial prevents immortal time bias and other
self-inflicted injuries in observational analyses. J Clin
Epidemiol. 2016;79:70–75.

53. Howe CJ, Robinson WR. Survival-related selection bias in
studies of racial health disparities: the importance of the target
population and study design. Epidemiology. 2018;29(4):
524–524.

54. Van Geloven N, Le Cessie S, Dekker FW, et al. Transplant as
a competing risk in the analysis of dialysis patients. Nephrol
Dial Transplant. 2017;32(suppl 2):ii53–ii59.

55. Chaix B, Evans D, Merlo J, et al. Commentary: weighing up
the dead and missing reflections on inverse-probability
weighting and principal stratification to address truncation by
death. Epidemiology. 2012;23(1):129–131.

56. Therneau TA, Crowson C, Atkinson E. Multi-state models
and competing risks. 2023. https://cran.r-project.org/web/
packages/survival/vignettes/compete.pdf. Accessed March
31, 2023.

57. Andersen PK, Geskus RB, de Witte T, et al. Competing risks
in epidemiology: possibilities and pitfalls. Int J Epidemiol.
2012;41(3):861–870.

58. Tchetgen Tchetgen EJ. Identification and estimation of
survivor average causal effects. Stat Med. 2014;33(21):
3601–3628.

59. Syriopoulou E, Mozumder SI, Rutherford MJ, et al.
Estimating causal effects in the presence of competing events
using regression standardisation with the Stata command
standsurv. BMC Med Res Methodol. 2022;22(1):226.

Am J Epidemiol. 2023;192(8):1415–1423

https://doi.org/10.48550/arXiv.2202.03513
https://doi.org/10.48550/arXiv.2202.03513
https://cran.r-project.org/web/packages/survival/vignettes/compete.pdf
https://cran.r-project.org/web/packages/survival/vignettes/compete.pdf

	 Considering Questions Before Methods in Dementia Research With Competing Events and Causal Goals
	REASONING ABOUT ASSUMPTIONS AND STATISTICS FOR THE TOTAL AND CONTROLLED DIRECT EFFECT CASE 1: AN IDEALIZED TRIAL
	REASONING ABOUT ASSUMPTIONS AND STATISTICS FOR THE TOTAL AND CONTROLLED DIRECT EFFECT CASE 2: APPLICATION TO THE ROTTERDAM STUDY
	METHODS 
	RESULTS
	DISCUSSION 


